INTEGRATED MATH 1/2 READINESS TEST

STANDARDS ASSESSED

Grade 8 Expressions and Equations
8.EE.A.1 : Know and apply the properties of integer exponents to generate equivalent numerical expressions.

8.EE.B.5 : Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.

8.EE.C.7.a : Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x = a$, $a = a$, or $a = b$ results (where a and b are different numbers).

8.EE.C.8.b : Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection.

Grade 8 Functions
8.F.A.1 : Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.

8.F.A.2 : Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

8.F.A.3 : Interpret the equation $y = mx + b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.

8.F.B.4 : Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

8.F.B.5 Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

High School Functions
HSF-IF.A.1: Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a
function and \(x \) is an element of its domain, then \(f(x) \) denotes the output of \(f \) corresponding to the input \(x \). The graph of \(f \) is the graph of the equation \(y = f(x) \).

HSF-LE.A.3: Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

Grade 8 Geometry

8.G.A: Understand congruence and similarity using physical models, transparencies, or geometry software.

8.G.B: Understand and apply the Pythagorean Theorem.

8.G.C.9: Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.

High School Geometry

HSG-C.A.2: Identify and describe relationships among inscribed angles, radii, and chords.

HSG-GPE.B.4: Use coordinates to prove simple geometric theorems algebraically.

Grade 8 Statistics & Probability

8.SP.A.1: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.

8.SP.A.2: Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.

8.SP.A.3: Core Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.

8.SP.A.4: Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables.

High School Algebra

HSA-CED.A.1: Create equations and inequalities in one variable and use them to solve problems.

HSA-REI.B.3: Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

HSA-RELC.5: Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.